Free PDF 2025 Databricks Latest Databricks-Generative-AI-Engineer-Associate: Databricks Certified Generative AI Engineer Associate Valid Exam Cram
To learn more about our Databricks-Generative-AI-Engineer-Associate exam braindumps, feel free to check our Databricks-Generative-AI-Engineer-Associate Exams and Certifications pages. You can browse through our Databricks-Generative-AI-Engineer-Associate certification test preparation materials that introduce real exam scenarios to build your confidence further. Choose from an extensive collection of products that suits every Databricks-Generative-AI-Engineer-Associate Certification aspirant. You can also see for yourself how effective our methods are, by trying our free demo. So why choose other products that can’t assure your success? With Exam4PDF, you are guaranteed to pass Databricks-Generative-AI-Engineer-Associate certification on your very first try.
Exam4PDF was established in 2008, now we are the leading position in this field as we have good reputation of high-pass-rate Databricks-Generative-AI-Engineer-Associate guide torrent materials. Our Databricks-Generative-AI-Engineer-Associate exam questions are followed by many peers many years but never surpassed. We build a mature and complete Databricks-Generative-AI-Engineer-Associate learning guide R&D system, customers' information safety system & customer service system since past 10 years. Every candidate who purchases our valid Databricks-Generative-AI-Engineer-Associate Preparation materials will enjoy our high-quality guide torrent, information safety and golden customer service.
>> Databricks-Generative-AI-Engineer-Associate Valid Exam Cram <<
Valid Test Databricks-Generative-AI-Engineer-Associate Tutorial & Exam Databricks-Generative-AI-Engineer-Associate Certification Cost
As our Databricks Certified Generative AI Engineer Associate study questions can bring more professional quality service for the user. Our Databricks-Generative-AI-Engineer-Associate study materials can give the user confidence and strongly rely on feeling, lets the user in the reference appendix not alone on the road, because we are to accompany the examinee on Databricks-Generative-AI-Engineer-Associate Exam, candidates need to not only learning content of teaching, but also share his arduous difficult helper, so believe us, we are so professional company. Now, you can free download the demo of our Databricks-Generative-AI-Engineer-Associate test guide to understand in more details.
Databricks Databricks-Generative-AI-Engineer-Associate Exam Syllabus Topics:
Topic
Details
Topic 1
Topic 2
Topic 3
Databricks Certified Generative AI Engineer Associate Sample Questions (Q19-Q24):
NEW QUESTION # 19
After changing the response generating LLM in a RAG pipeline from GPT-4 to a model with a shorter context length that the company self-hosts, the Generative AI Engineer is getting the following error:
What TWO solutions should the Generative AI Engineer implement without changing the response generating model? (Choose two.)
Answer: B,E
Explanation:
* Problem Context: After switching to a model with a shorter context length, the error message indicating that the prompt token count has exceeded the limit suggests that the input to the model is too large.
* Explanation of Options:
* Option A: Use a smaller embedding model to generate- This wouldn't necessarily address the issue of prompt size exceeding the model's token limit.
* Option B: Reduce the maximum output tokens of the new model- This option affects the output length, not the size of the input being too large.
* Option C: Decrease the chunk size of embedded documents- This would help reduce the size of each document chunk fed into the model, ensuring that the input remains within the model's context length limitations.
* Option D: Reduce the number of records retrieved from the vector database- By retrieving fewer records, the total input size to the model can be managed more effectively, keeping it within the allowable token limits.
* Option E: Retrain the response generating model using ALiBi- Retraining the model is contrary to the stipulation not to change the response generating model.
OptionsCandDare the most effective solutions to manage the model's shorter context length without changing the model itself, by adjusting the input size both in terms of individual document size and total documents retrieved.
NEW QUESTION # 20
Generative AI Engineer at an electronics company just deployed a RAG application for customers to ask questions about products that the company carries. However, they received feedback that the RAG response often returns information about an irrelevant product.
What can the engineer do to improve the relevance of the RAG's response?
Answer: D
Explanation:
In a Retrieval-Augmented Generation (RAG) system, the key to providing relevant responses lies in the quality of the retrieved context. Here's why option A is the most appropriate solution:
* Context Relevance:The RAG model generates answers based on retrieved documents or context. If the retrieved information is about an irrelevant product, it suggests that the retrieval step is failing to select the right context. The Generative AI Engineer must first assess the quality of what is being retrieved and ensure it is pertinent to the query.
* Vector Search and Embedding Similarity:RAG typically uses vector search for retrieval, where embeddings of the query are matched against embeddings of product descriptions. Assessing the semantic similarity searchprocess ensures that the closest matches are actually relevant to the query.
* Fine-tuning the Retrieval Process:By improving theretrieval quality, such as tuning the embeddings or adjusting the retrieval strategy, the system can return more accurate and relevant product information.
* Why Other Options Are Less Suitable:
* B (Caching FAQs): Caching can speed up responses for frequently asked questions but won't improve the relevance of the retrieved content for less frequent or new queries.
* C (Use a Different LLM): Changing the LLM only affects the generation step, not the retrieval process, which is the core issue here.
* D (Different Semantic Search Algorithm): This could help, but the first step is to evaluate the current retrieval context before replacing the search algorithm.
Therefore, improving and assessing the quality of the retrieved context (option A) is the first step to fixing the issue of irrelevant product information.
NEW QUESTION # 21
A Generative Al Engineer is developing a RAG system for their company to perform internal document Q&A for structured HR policies, but the answers returned are frequently incomplete and unstructured It seems that the retriever is not returning all relevant context The Generative Al Engineer has experimented with different embedding and response generating LLMs but that did not improve results.
Which TWO options could be used to improve the response quality?
Choose 2 answers
Answer: B,C
Explanation:
The problem describes a Retrieval-Augmented Generation (RAG) system for HR policy Q&A where responses are incomplete and unstructured due to the retriever failing to return sufficient context. The engineer has already tried different embedding and response-generating LLMs without success, suggesting the issue lies in the retrieval process-specifically, how documents are chunked and indexed. Let's evaluate the options.
* Option A: Add the section header as a prefix to chunks
* Adding section headers provides additional context to each chunk, helping the retriever understand the chunk's relevance within the document structure (e.g., "Leave Policy: Annual Leave" vs. just "Annual Leave"). This can improve retrieval precision for structured HR policies.
* Databricks Reference:"Metadata, such as section headers, can be appended to chunks to enhance retrieval accuracy in RAG systems"("Databricks Generative AI Cookbook," 2023).
* Option B: Increase the document chunk size
* Larger chunks include more context per retrieval, reducing the chance of missing relevant information split across smaller chunks. For structured HR policies, this can ensure entire sections or rules are retrieved together.
* Databricks Reference:"Increasing chunk size can improve context completeness, though it may trade off with retrieval specificity"("Building LLM Applications with Databricks").
* Option C: Split the document by sentence
* Splitting by sentence creates very small chunks, which could exacerbate the problem by fragmenting context further. This is likely why the current system fails-it retrieves incomplete snippets rather than cohesive policy sections.
* Databricks Reference: No specific extract opposes this, but the emphasis on context completeness in RAG suggests smaller chunks worsen incomplete responses.
* Option D: Use a larger embedding model
* A larger embedding model might improve vector quality, but the question states that experimenting with different embedding models didn't help. This suggests the issue isn't embedding quality but rather chunking/retrieval strategy.
* Databricks Reference: Embedding models are critical, but not the focus when retrieval context is the bottleneck.
* Option E: Fine tune the response generation model
* Fine-tuning the LLM could improve response coherence, but if the retriever doesn't provide complete context, the LLM can't generate full answers. The root issue is retrieval, not generation.
* Databricks Reference: Fine-tuning is recommended for domain-specific generation, not retrieval fixes ("Generative AI Engineer Guide").
Conclusion: Options A and B address the retrieval issue directly by enhancing chunk context-either through metadata (A) or size (B)-aligning with Databricks' RAG optimization strategies. C would worsen the problem, while D and E don't target the root cause given prior experimentation.
NEW QUESTION # 22
A Generative Al Engineer is creating an LLM-based application. The documents for its retriever have been chunked to a maximum of 512 tokens each. The Generative Al Engineer knows that cost and latency are more important than quality for this application. They have several context length levels to choose from.
Which will fulfill their need?
Answer: B
Explanation:
When prioritizing cost and latency over quality in a Large Language Model (LLM)-based application, it is crucial to select a configuration that minimizes both computational resources and latency while still providing reasonable performance. Here's whyDis the best choice:
* Context length: The context length of 512 tokens aligns with the chunk size used for the documents (maximum of 512 tokens per chunk). This is sufficient for capturing the needed information and generating responses without unnecessary overhead.
* Smallest model size: The model with a size of 0.13GB is significantly smaller than the other options.
This small footprint ensures faster inference times and lower memory usage, which directly reduces both latency and cost.
* Embedding dimension: While the embedding dimension of 384 is smaller than the other options, it is still adequate for tasks where cost and speed are more important than precision and depth of understanding.
This setup achieves the desired balance between cost-efficiency and reasonable performance in a latency- sensitive, cost-conscious application.
NEW QUESTION # 23
A Generative AI Engineer developed an LLM application using the provisioned throughput Foundation Model API. Now that the application is ready to be deployed, they realize their volume of requests are not sufficiently high enough to create their own provisioned throughput endpoint. They want to choose a strategy that ensures the best cost-effectiveness for their application.
What strategy should the Generative AI Engineer use?
Answer: D
Explanation:
* Problem Context: The engineer needs a cost-effective deployment strategy for an LLM application with relatively low request volume.
* Explanation of Options:
* Option A: Switching to external models may not provide the required control or integration necessary for specific application needs.
* Option B: Using a pay-per-token model is cost-effective, especially for applications with variable or low request volumes, as it aligns costs directly with usage.
* Option C: Changing to a model with fewer parameters could reduce costs, but might also impact the performance and capabilities of the application.
* Option D: Manually throttling requests is a less efficient and potentially error-prone strategy for managing costs.
OptionBis ideal, offering flexibility and cost control, aligning expenses directly with the application's usage patterns.
NEW QUESTION # 24
......
Exam4PDF is a trusted platform that is committed to helping Databricks Databricks-Generative-AI-Engineer-Associate exam candidates in exam preparation. The Databricks Databricks-Generative-AI-Engineer-Associate exam questions are real and updated and will repeat in the upcoming Databricks Databricks-Generative-AI-Engineer-Associate Exam. By practicing again and again you will become an expert to solve all the Databricks-Generative-AI-Engineer-Associate exam questions completely and before the exam time.
Valid Test Databricks-Generative-AI-Engineer-Associate Tutorial: https://www.exam4pdf.com/Databricks-Generative-AI-Engineer-Associate-dumps-torrent.html